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SUMMARY

In this paper three-dimensional lubrication �ow of grease is analysed numerically. The lubrication
�ow con�guration is formed by two ellipsoid rollers. The load is assumed to be light enough for the
lubrication mode to be purely hydrodynamic. The �uid behaviour is modelled using the Herschel–
Bulkley model, and a two-dimensional modi�ed Reynolds equation is derived. The numerical solutions
are obtained by using a hybrid spectral=iterative technique and the Galerkin projection scheme. The
e�ects of the material and geometrical parameters on pressure distribution are emphasized in the study.
The investigation is conducted for a situation where the two ellipsoids are fully immersed in a grease
lubricant. The e�ect of the geometry on the pressure distribution is determined by varying the ratio
of the semi-axes and the minimum gap of the two rollers, respectively. The e�ect of the material
parameters is examined by varying the power-law index and yield stress. It is found that the pressure
distribution is strongly in�uenced by the shape of the rollers, the size of the minimum gap of the rollers
and the rheological parameters. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: non-Newtonian �ow; Herschel–Bulkley model; grease lubrication; spectral method;
Galerkin projection scheme

1. INTRODUCTION

The main objective of lubricants in non-conformal tribological contacts is to produce a sub-
stantially thick lubricant �lm between the contacting bodies, and thus prevent metal-to-
metal contact. In engineering practice, non-conformal contacts can be found in a variety of
machine elements such as rolling element bearings, gears, cam and cam followers. The
lubricant in such contacts must be capable of producing a lubricant �lm under all operating
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conditions of the machine elements. Only the presence of a lubricant �lm can reduce fric-
tion and increase the operating life of tribological contacts. The practical importance of the
lubricant �lm �ow has stimulated a great deal of research, both theoretical and experimental.
Signi�cant knowledge of the pressure-build-up mechanisms and the operating lubricant �lm
thickness in such tribological contacts for oil as a lubricant with Newtonian characteristics is
well documented [1–3], while the theory of grease lubrication is far from perfect because of
the complexity of its rheological properties. In practice, however, approximately 80–90% of
rolling element bearings are lubricated with grease [4]. The understanding of the rheological
behaviour of lubricating greases is nowadays a decisive factor in the design and optimization
of the tribological systems as well as in the control of their processing. Greases are two-phase
lubricants composed of a thickener dispersed in a base oil. The thickener is either a polymer
�bre or a metallic soap made of a base of lithium, calcium, aluminium, sodium or synthetic.
Due to the e�ects of the thickener, greases are often modelled as a plastic solid. Unlike oil,
grease can withstand shear and will not �ow until a critical yield stress is reached. Tradition-
ally, these properties of grease have been related to the so-called ‘yield state’ at low strain
rates and a shear-thinning behaviour at medium and high strain rates. Thus, the typical grease
�ow curve exhibits constant values of shear stress at low strain rates [5].
Several constitutive models have been employed in studying the grease lubrication. The two-

parameter Bingham model is the one that was the earliest chosen to deal with the problem of
grease lubrication. Fluids obeying this model are called Bingham plastic �uids and exhibit a
linear shear stress, shear-rate behaviour after an initial shear-stress threshold has been reached.
Earlier attempt at theoretical analysis of grease lubrication was reported by Sasaki et al. [6]
who used a Bingham solid as a model for grease �owing between non-deformed cylinders.
Wada et al. [7] used a Bingham solid as a rheological model to derive a modi�ed Reynolds
equation and obtained a numerical solution for grease �lm shape and pressure distribution
for elastohydrodynamic lubrication. Following in these footsteps, Yang and Qian [8] derived
a 2D grease lubrication equation with a Bingham model. The drawback of modelling grease
lubrication with Bingham model is that the viscosity of Bingham �uids remains constant
upon yielding. Experimental study conducted by Zhu and Neng [9], which dealt with the
lubrication mechanism of grease in tribological contacts, showed that when grease is sheared,
the apparent viscosity of the grease varies and approaches the viscosity of the base oil. Based
on the available experimental data, Kauzlarich and Greenwood [10] found that most greases
behave pseudo-plastically, and in the case of calcium grease, some greases will shear thicken
or shear thin depending upon the shear rate.
The Herschel–Bulkley (HB) equation is one of the more realistic constitutive models for

grease. HB �uids are described by a three-parameter rheological model. When the local shear
stress is below the yield stress, HB �uids behave as rigid solids, similar to Bingham �uids.
Once the yield stress is exceeded, unlike Bingham �uids, HB �uids �ow with a non-linear
stress–strain relationship either as a shear-thickening �uid, or a shear-thinning one. Grease
�uids behave in this manner. Thus, the HB model is preferred to Bingham and other models
because of its accurate rheological response [5, 9, 10]. Many studies on grease lubrication
were conducted using the HB model. For example, Kauzlarich and Greenwood [10] derived
a simpli�ed pressure distribution equation for a grease �lm described by the HB model. They
also validated the model experimentally. Jonkisz and Krzeminski-Freda [11, 12] obtained a
numerical solution of grease lubrication problem with HB model and compared it against
experiment. They also studied the e�ects of breakdown of the grease structure and of starvation
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conditions on the �lm thickness. Yoo and Kim [13] �rst studied the thermal e�ect in the
grease lubrication problem using HB model. They investigated the e�ects of temperature and
rheological parameters on the minimum �lm thickness. Besides Bingham and HB models, a
four-parameter model put forward by Bauer [14] was employed by Dong and Qian [15] to
solve grease lubrication problem. Other related studies on grease lubrication can be found in
References [16–19].
The previous work about grease lubrication problem was mostly focused on small �lm

thickness formulations and pressure distribution for both hydrodynamic and elastohydrody-
namic contacts. However, the full range of geometrical parameters, such as the dimensions
and shape of two rollers in contact, has not been adequately studied. Brewe et al. [20] ex-
amined the e�ect of geometry on hydrodynamic �lm thickness for Newtonian �ow. They
investigated the e�ect of load capacity by varying the ratio of the transverse radius to the
rolling radius and the dimensionless �lm thickness for a conjunction fully immersed in the
lubricant. For the lubrication �ow of HB �uids, previous studies were limited to line contact.
The current paper focuses on the grease lubrication of a �uid obeying the HB constitutive

model, between two ellipsoids of arbitrary dimensions. The in�uence of geometrical param-
eters, such as the ratio of the transverse radius to the rolling radius, the dimensionless �lm
thickness, and the HB �uid parameters, such as the power-law index, n, and the yield stress,
T0, on the pressure distribution is examined. A 3D lubrication formulation for the HB �uid
is developed, and the problem is solved numerically. In particular, a fully �ooded grease �lm
between two rigid ellipsoidal solids in a pure rolling condition is examined, and a modi�ed
Reynolds equation is developed that is based on the HB model. The governing equation for
pressure is developed following a procedure similar to the derivation of the conventional
Reynolds equation in 3D �ow under the assumption of lubrication theory.
The numerical solution of the modi�ed Reynolds equation remains challenging despite the

advent of powerfully computational techniques and platforms. Existing studies on the nu-
merical solution of elliptic partial di�erential equations mostly use the Gauss–Seidel iterative
method, and recently the multi-grid technique was also used [21, 22]. The multi-grid method
allows a large number of nodes to be considered and signi�cantly reduces the CPU require-
ment. In the present study, a combination of spectral and iterative schemes, coupled with a
Newton–Raphson iteration scheme is used to solve the modi�ed Reynolds equation.
The paper is organized as follows. The problem formulation is given in Section 2, the

solution procedure is outlined in Section 3, results and discussion are given in Section 4.
Finally, concluding remarks are found in Section 5.

2. PROBLEM FORMULATION

In this section, the lubrication �ow con�guration is introduced, and the general conservation
and constitutive equations for a HB �uid, as well as the boundary conditions are brie�y
reviewed. The lubrication assumption is then adopted to derive the equation for the �ow of
a thin �lm.

2.1. Governing equations and boundary conditions

Consider the general steady lubrication �ow of an incompressible �uid of density � and
(Newtonian) viscosity �, between two ellipsoids, in the (x1; x2; x3) space. For simplicity, only
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Figure 1. Schematic illustration of the lubrication �ow between two ellipsoids.

symmetric �ow with respect to the (x1; x2) plane will be considered. The extension of the
formulation to more general con�gurations is straightforward. The situation is schematically
depicted in Figure 1. The equation for the ellipsoid is

x21
R21
+
x22
R22
+
(x3 −H0=2− R3)2

R23
= 1

where R1, R2 and R3 are the semi-axes, and are assumed to be of the same order, R,
and H0 is the minimum gap between the two ellipsoids. The gap distribution is denoted
by x3 =H (x1; x2)=2. If L1 and L2 are two typical lengths along the lateral directions x1 and x2,
respectively, then L1 ×L2 becomes the domain of calculation. It is, however, convenient to
introduce one length scale, L, in the horizontal plane, such that L1 =L and L2 = �L, where
�=R2=R1. The dimensionless variables are de�ned as follows:

(x; y; z) =
1
L

(
x1;
x2
�
;
x3
�

)
; (u; v; w)=

1
�V

(
u1; �u2;

u3
�

)
; p= �2

L
� �V
P

(R; S) =
�L
� �V
(�13; ��23); (X; Y; Z; XY )=

L
� �V
(�11; �2�22; �33; ��12); h=

H
�L

(1)

where �V is a reference velocity and �=L=R1 is the small aspect ratio. Here ui and �ij
(i; j=1; 2; 3) are the velocity vector and (symmetric) excess stress tensor components, and P
is the pressure.
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In this study, the �uid is assumed to obey the HB constitutive model. In this case, the
excess stress tensor components are given by

�ij =
(
K�̇n−1 +

�0
�̇

)
�̇ij ; for �¿ �0

�̇ = 0; for �¡�0

(2)

where K is a non-Newtonian ‘viscosity’ parameter, �0 is the yield stress and n is the power-law
exponent. Here �̇ij=(@ui=@xj) + (@uj=@xi) are the components of the rate-of-strain tensor, and
�̇ and � are the second invariants of the rate-of-strain and excess stress tensor, respectively.
They are de�ned by

�̇=
√
�̇ij �̇ij=2; �=

√
�ij�ij=2 (3)

The Bingham constitutive model is recovered when n=1 in Equation (2), whereas the
Newtonian �uid is obtained upon setting both n=1 and �0 = 0. Finally, the power-law model
corresponds to �0 = 0 with n �=1. Similar to the Bingham �uid, Equation (2) can account for
the presence of a plug �ow far from the rigid boundaries.
In dimensionless form, and if terms of O(�2) and higher are excluded, then the conservation

equations of mass and momentum reduce to

ux +
1
�2
vy + wz = 0 (4)

�2Re
(
uux +

1
�2
vuy + wuz

)
= −px + Rz (5)

�2Re
(
uvx +

1
�2
vvy + wvz

)
= −py + Sz (6)

pz = 0 (7)

where a subscript denotes partial di�erentiation. The Reynolds number Re (de�ned in terms
of L) is small for most lubrication �ows, and inertia e�ects will be neglected in this work.
The e�ect of inertia has been extensively examined in previous studies on thin-�lm �ow [23].
As to the boundary conditions, there is obviously a wide range of geometrical con�gurations

and boundary kinematics that can be prescribed, with �ows that can be easily accommodated
by the present formulation and solution procedure. In this study, the plane (x; y) is always
assumed to be a symmetry plane, which can also cover a large number of interesting �ow
con�gurations. Thus,

R(x; y; z=0)= S(x; y; z=0)=0 (8)

The velocity is assumed to be fully prescribed at the rigid surface, so that

u(x; y; z= h=2)=U (x; y); v(x; y; z= h=2)=V (x; y) (9)

where the velocity components at the boundary, U and V , will be explicitly given. Finally,
since the �ow is only induced by the movement of the rigid surface(s), the pressure will be
taken to vanish far away.
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For a HB �uid, the dimensionless shear-stress components are expressed in terms of the
(dominant) shear rates, from Equation (2), as follows:

R= �uz; S= �vz; z¿
hpf
2

(10)

where a dimensionless apparent viscosity, �=(T0=�̇) + �̇
n−1
, has been introduced. Here

T0 = �0=[K( �V=�L)n] is the dimensionless yield stress, �̇=
√
u2z + (1=�2)v2z is the dimension-

less second invariant of the rate-of-strain tensor, and hpf is the thickness of the plug-�ow
core. Note that the viscosity parameter has been set to �=K( �V=�L)n−1.
In the absence of inertia, Equations (5) and (6), using (7), are integrated once over the

interval [0; z] after substituting for the shear stresses from (10) and using conditions (8). The
velocity gradients, uz and vz, are expressed in terms of the pressure gradients to yield, after
eliminating �:

�̇=

[
z

√
p2x +

1
�2
p2y−T0

]1=n
; z¿

hpf
2

(11)

which, in turn, allows � to be expressed explicitly in terms of z and p. The width of the
plug-�ow zone is determined by setting �̇=0 in Equation (11):

hpf =
2T0√

p2x +
1
�2
p2y

(12)

The pressure equation is obtained by integrating the continuity equation (4) over the interval
z ∈ [0; h=2], which after some algebraic manipulation gives

(Fpx)x+
1
�2
(Fpy)y=

1
2
(Uh)x+

1
2�2

(Vh)y (13)

where

F(x; y)=
∫ (1=2)hpf

0

∫ (1=2)h(x;y)

(1=2)hpf

z′

�(x; y; z′)
dz′dz+

∫ (1=2)h(x;y)

(1=2)hpf

∫ (1=2)h(x;y)

z

z′

�(x; y; z′)
dz′dz (14)

with the dimensionless gap being approximately given by

h(x; y)=
h0
2
+
�
2

(
x2 +

y2

�2

)
(15)

where � is the ratio of radius R3 to R1. The viscosity is explicitly given in terms of the
pressure gradients, namely

�=T0

[
z

√
p2x+

1
�2
p2y−T0

]−(1=n)
+

[
z

√
p2x+

1
�2
p2y−T0

](n−1)=n
; z¿

hpf
2

(16)
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Equation (13) is the generalized Reynolds equation for a HB �uid, and is solved subject to
homogeneous conditions of the pressure at the boundary.

2.2. Channel Poiseuille �ow of a HB �uid

To understand further the fundamental behaviour of a HB �uid, consider the channel Poiseuille
�ow in the (x; z) plane. A suitable velocity scale is �V =−D2�=�L, where D is the channel
half-width, L is the channel length, and � is the imposed pressure di�erence. Since the
�ow is symmetric, only the domain z ∈ [0; 1=2] will be considered. It is not di�cult to con-
clude that the position of the yield surface is given by hpf = 2T0, which is the same as that
corresponding to a Bingham �uid [24]. This value is also in agreement with the more gen-
eral expression (12) in the limit py=0 and px=1. The velocity in this case is determined
as

u(z)=

⎧⎪⎪⎨
⎪⎪⎩
n

[(
1
2−T0

)(n+1)=n −(z − T0)(n+1)=n
]/
(n+1);

hpf
2
=T06 z6 1

2

n
[(

1
2−T0

)(n+1)=n]/
(n+1); z¡

hpf
2
=T0

(17)

The Newtonian limit is recovered upon setting T0 = 0 and n=1, namely u(z)= (1−z2)=8. Thus,
the basic Poiseuille �ow (17) of a HB �uid consists of an unyielded region |z|¡hpf =2=T0 in
the channel centre, where the viscosity is e�ectively in�nite, bounded by two yielded regions
for hpf =2=T06 |z|6 1

2 , in which there is a nonlinear variation in the e�ective viscosity. This
behaviour is typically illustrated in Figure 2, where the in�uence of the power-law index
on the velocity (Figure 2(a)) and viscosity pro�les (Figure 2(b)) is shown for T0 = 0:1 and
the range n∈ [0:8; 1:2]. The overall in�uence of T0 and n on the �ow rate, Q, is shown in
Figure 2(c). In the yielded region, the velocity pro�le is close to parabolic for small n,
and becomes close to linear for large n. The linear dependence is apparent upon taking the
limit n→ ∞ of u(z) in (17). It is interesting to observe from Figure 2(a) the unexpected
essentially linear dependence of the (plug-�ow) velocity on n in the unyielded core given
the highly nonlinear expression in (17). In general, the overall viscosity decreases with n,
and also the viscosity increases from its (minimum) value at the wall, but eventually levels
o� near the unyielded core. The decay becomes sharper as n increases. Indeed, in the limit
n→ ∞, �→ 1+T0 and ∞ in the yielded and unyielded regions, respectively. In this case, �
exhibits a discontinuity. Another quantity of interest is the volume �ow rate (once a driving
pressure is imposed). In dimensionless form, the volume �ow rate Q is given by

Q=
(
2n
n+1

) (
1
2
−T0

)(n+1)=n [
1
2
− n
2n+1

(
1
2
−T0

)]
(18)

Recall that expression (18) is based on the same pressure gradient. Figure 2(c) indicates that
Q generally increases with n, which is expected since it is easier for the �uid to move through
the channel as the e�ective viscosity decreases. The �ow rate is smaller for larger T0, as this
corresponds to larger unyielded core. In fact, beyond T0 = 0:4, there is barely any �ow that
moves through the channel.
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Figure 2. Symmetric channel �ow of a HB �uid. Shown are: (a) the velocity pro�les for
T0 = 0:1 and n∈ [0:8; 1:2]; (b) corresponding e�ective viscosity pro�le; and (c) the in�uence
of both the yield stress and power-law index on the volume �ow rate. Note that the thickness

of the unyielded region is independent of n.

3. SOLUTION PROCEDURE

In this section, the method of solution of Equation (13) is outlined, which consists of a hybrid
spectral=iterative scheme and the Galerkin projection scheme.

3.1. Pressure expansion

The domain of computation is given by (x; y)∈ [−1=2;+1=2]× [−1=2;+1=2]. A general
solution expansion for the pressure, which satis�es homogeneous conditions at the domain
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boundary, is of the form

p(x; y)=
∑
m=1

∑
n=1
pmn sin(2m	x) cos

[
(2n−1)	y

�

]
(19)

where m and n are positive integers, and pmn are unknown coe�cients. Upon substitution of
expression (19) into Equation (13), and using the Galerkin projection, we obtain

∑
m=1

∑
n=1
pmn

{[
(2m)2+

(
2n− 1
�

)2]

im
jn−8m	� Aijmn+

4(2n−1)
	�2

Bijmn

}

+
2
	2�

(UCij+VDij)=0 (20)

where the following matrix coe�cients have been introduced:

Aijmn =
∫ �=2

−(�=2)

∫ 1=2

−(1=2)

Fx
F
cos(2m	x) cos

[
(2n− 1)	y

�

]
sin(2i	x)

× cos
[
(2j − 1)	y

�

]
dx dy (21a)

Bijmn =
∫ �=2

−(�=2)

∫ 1=2

−(1=2)

Fy
F
sin(2m	x) sin

[
(2n− 1)	y

�

]
sin(2i	x)

× cos
[
(2j − 1)	y

�

]
dx dy (21b)

Cij =
∫ �=2

−(�=2)

∫ 1=2

−(1=2)

hx
F
sin(2i	x) cos

[
(2j − 1)	y

�

]
dx dy (21c)

Dij =
∫ �=2

−(�=2)

∫ 1=2

−(1=2)

hy
F
sin(2i	x) cos

[
(2j − 1)	y

�

]
dx dy (21d)

Equations (20) form a system of linear equations with matrix coe�cients determined through
expressions (21). The governing equation is solved using an iterative re�nement algorithm
(see below).

3.2. Iterative process

Equation (20), subject to homogeneous boundary conditions for the pressure, is solved using
an iterative scheme for the evaluation of the matrix coe�cients. The �rst step in the process
consists of dividing the computational domain into rectangular �nite elements. A mesh of
30 and 30 elements in the x and y directions, respectively, is reasonably su�cient. In a
typical case involving a HB �uid, the pressure gradients, px(xi; yj) and py(xi; yj), are �rst
calculated for a Newtonian �uid, where (xi; yj) are the coordinates of node (i; j). These values
are then used to calculate the hpf and � for the HB �uid (for prescribed T0 and n values)
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from expressions (12) and (16), respectively. Sometimes it is necessary to incorporate an
intermediate step based on an n value between 1 and the prescribed value, or a T0 value
between 0 and the prescribed value. Once hpf (xi; yj) and �(xi; yj) are evaluated, then F(xi; yj)
is determined by carrying out the integrals in expression (14). The same process is then
repeated for each node in the domain. Using Lagrange polynomials, a continuous distribution
is obtained for F(x; y):

F(x; y)= [Ni; j Ni+1; j Ni+1; j+1 Ni; j+1] [Fi; j Fi+1; j Fi+1; j+1 Fi; j+1]t (22)

where Fi; j=F(x= xi; y=yj), and the nodal interpolation functions are bi-linear functions of
x and y, namely

Ni; j=
(
x−xi+1; j
xi; j−xi+1; j

) (
y−yi; j+1
yi; j−yi; j+1

)

The matrix coe�cients are then determined from (21) using Gauss quadrature formulae,
which in turn allow the calculation of the pressure coe�cients from (20). The process is
repeated until convergence is attained. The numerical results are stable and the number of iter-
ations depends on the relevant global error tolerance control. Figure 3 shows the in�uence of
number of iterations on the convergence for a �uid with parameters T0 = 0:2 and n=1:1,
under conditions U =1, V =0, h0 = 0:1 and �=�=1. Here the error tolerance is set at 10−4.
It is typically found that two to three iterations are su�cient for acceptable convergence. The
assessment of the in�uence of grid density on the numerical result is showed in Figure 4,
where the �uid parameters and the �ow conditions are the same as in Figure 3. It is found
that the mesh of 30× 30 elements in the x and y directions is su�cient for the results to
become independent of grid density.
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Figure 3. In�uence of number of iteration on convergence. Shown are the distributions: (a) in
the streamwise direction at y=0; and (b) in the breadthwise direction at x= − 0:19, for a �uid

with T0 = 0:2 and n=1:1. Here �=1, h0 = 0:1 and �=1.
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Figure 4. In�uence of number of mesh on the solution dependence of grid. Shown are the distribu-
tions: (a) in the streamwise direction at y=0; and (b) in the breadthwise direction at x= − 0:19.

The remaining parameters are the same as in Figure 3.

4. RESULTS AND DISCUSSION

In this section, the �ow of grease is examined between two ellipsoids for various �ow con-
�gurations. The pressure distribution is of course crucial in lubrication �ow, and it will be
determined along with the �ow �eld. The �ow is examined for various ranges of geometrical
as well as material parameters. The in�uence of geometry is examined �rst.

4.1. In�uence of geometry

Consider �rst the in�uence of the breadth of the ellipsoid in the y direction on the �ow, which
is examined upon varying the value of �. This, simultaneously, will be used to assess the
accuracy of the method upon comparing the results against the 2D �ow between two in�nite
cylinders, which is reached upon setting �→ ∞. The in�uence of � is depicted in Figure 5,
where the pressure distribution is shown as a function of x and y for �∈ [1;∞), for a �uid
with parameters T0 = 0:2 and n=1:1. The two ellipsoids are assumed to be rolling only so
that U =1 and V =0. Here h0 = 0:1 and �=1. A 3D perspective is shown in Figure 6 for
�=1. For these parameters, �=1 corresponds to the �ow between two spheres, for which
the pressure is smallest, as Figure 5 indicates. The distribution p(x= − 0:19; y) is essentially
triangular and symmetric with respect to y=0, where the maximum in pressure is reached at
x= − 0:19. As � increases from 1, the overall pressure increases sharply. In particular, the
pressure gradient component, py, increases steeply near the boundaries y=± 1=2, whereas the
component px remains essentially una�ected by � near x=± 1=2. The case �→∞ corresponds
to the �ow between two in�nite cylinders. The pressure distribution in this case is based on the
2D �ow formulation, and is taken as a limit case against which the 3D results are compared
for large �. Indeed, Figure 5 shows that the 2D �ow is essentially recovered for �¿10. The
rate of convergence towards the 2D limit depends strongly on the �uid parameters (see next).
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Figure 5. In�uence of aspect ratio, �, on pressure distribution. Shown are the distributions: (a) in
the streamwise direction at y=0; and (b) in the breadthwise direction at x= − 0:19, for a �uid

with T0 = 0:2 and n=1:1. Here �=1, h0 = 0:1 and �∈ [1;∞).
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Figure 6. A 3D perspective of the pressure distribution for the �ow between two spheres (�=1).
The remaining parameters are as in Figure 5.

The pressure build-up is best re�ected by pmax, the maximum value in pressure. The
dependence of pmax on � is depicted in Figure 7, for n=0:8, 1.1 and 1.2, which con-
�rms the rapid increase in pressure build-up as the shape of the ellipsoid deviates from
spherical. For n=1:1, the pressure maximum increases with � until it begins to level o�
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Figure 7. Dependence of maximum pressure and its streamwise location on
� for the �ow with parameters in Figure 3.

for �¿10, beyond which the �ow becomes essentially the same as that between two in�-
nite cylinders. More generally, the pressure continues to increase with � (beyond �=10),
but eventually reaches the 2D limit. The streamwise location of the pressure maximum,
xmax, is also shown in Figure 7, which appears to be independent of �. Thus, the max-
imum in pressure appears to occur at the same location regardless of the breadth of the
ellipsoids.
Another geometrical parameter of importance is the minimum gap, h0. Its in�uence is now

examined over the range h0 ∈ [0:02; 0:1] on the �ow between two spheres (�=�=1), as
shown in Figure 8. The power-law index n=1:2 and the remaining parameters are as before.
The pressure tends to build up sharply as the gap narrows, for small gap widths (h0¡0:06).
At larger gaps, the build-up is slower. This is also con�rmed from Figure 9, where pmax and
xmax are plotted against h0. The maximum in pressure occurs close to the centre (x=0) for
small h0, and moves upstream as the gap widens. However, a value is reached, h0 ≈ 0:06,
beyond which the change of xmax is essentially inexistent.
The pressure distributions obtained in this study are similar in shape to those reported

in Reference [20], which focused on geometrical e�ects in hydrodynamic point contacts for
Newtonian �ow, and concluded that the geometry (the radius ratio �) does not a�ect the pres-
sure peak location but a�ects the magnitude of the pressure; the gap between the two rollers
has remarkable in�uence on both the location and the magnitude of the pressure distribution.
These observations are obviously in agreement with the current results.

4.2. In�uence of �uid parameters

The e�ect of �uid parameters, namely the power-law index, n, and the yield stress, T0, is
investigated for a �ow with U =1, V =0, h=0:1, �=�=1. The in�uence of n on the pres-
sure distributions, p(x; y=0) and p(x= − 0:19; y), are depicted in Figure 10(a) and (b),
respectively, for a �uid with n∈ [0:60; 1:40] and a yield stress T0 = 0:2. The location of
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Figure 8. In�uence of minimum-gap width, h0, on pressure distribution in the: (a) streamwise; and
(b) breadthwise directions, for a �uid with T0 = 0:2 and n=1:2. Here �=�=1.
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h0 for the �ow with parameters in Figure 8.

maximum pressure is xmax ≈ −0:19, regardless of the value of n. While the power-law index
has no e�ect on the pressure peak location, it contributes signi�cantly to the pressure build-
up. The pressure appears to increase linearly with n, at essentially every location. This result
is inconsistent with the calculations of Yoo and Kim [13], who examined the (2D) non-
isothermal grease elastohydrodynamic lubrication of line contacts for HB �ow. The elastic
deformation of the two in�nitely long cylinders and the temperature e�ects on the grease
lubrication performance were considered in their study. Johnson and Mangkoesoebroto [25]
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Figure 10. In�uence of power-law index, n, on pressure distribution in the: (a) streamwise; and
(b) breadthwise direction, for a �uid with T0 = 0:2 and h0 = 0:1, U =1, V =0. Here �=�=1.

investigated the pressure distribution of a power-law �uid between rigid walls of arbitrary
shape. Their results for the in�uences of power-law index, n, on the pressure distribution
between two spheres are consistent with the current study.
The in�uence of the power-law index, n, can be further assessed by examining its e�ect on

the dimensional e�ective viscosity of the �ow. Since the viscosity scale depends on n as it is
taken equal to �=K( �V=�L)n−1, the e�ective viscosity is examined in its dimensional form, and
is typically illustrated in Figure 11, where the viscosity is plotted against the (dimensionless)
gap position in the liquid region. Figure 11 shows that the e�ective viscosity decreases sharply
near the solid core, but levels o� quickly with position. The viscosity is found to increase
everywhere as n increases, which is consistent with the earlier prediction that the pressure
increases with n (see Figure 10). Note that this also con�rms that the pressure increases with
viscosity. Figure 12 depicts the e�ects of T0 on pressure for T0 ∈ [0:2; 1:0] and n=1:2. The
pressure increases with T0, re�ecting a pressure build-up as a result of the widening of the
solid core. The pressure peak location is essentially unchanged (at xmax ≈ −0:19). Figure 13
shows the in�uence of T0 on the e�ective viscosity of the �ow. It shows that the larger
the T0 the higher the e�ective viscosity. The rate of increase of the viscosity with T0 is,
however, halted for large T0. This behaviour is contrary to the in�uence of n. Figures 11
and 13 provide some guideline or means to control the value of the �uid viscosity during the
�ow. The overall picture is inferred from Figure 14, which shows the dependence of pmax on
n for T0 ∈ [0:2; 0:6], which con�rms the increase in pressure build-up for �uids with increasing
greasy character. There is, simultaneously, an interesting trend observed from Figure 14. For
small T0, that is close to the Newtonian limit, the pressure maximum increases linearly with n.
However, as T0 increases, the trend becomes piecewise linear; the pressure maximum exhibits
a change in slope at a critical n value that tends to decrease with T0. This behaviour is
reminiscent of phase transition phenomena in low-temperature �uids [26]. Note, �nally, that
the location of the pressure peak is not a�ected by �uid parameters.
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Figure 11. In�uence of power-law index, n, on the e�ective viscosity. For a
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Figure 12. In�uence of yield stress, T0, on pressure distribution in the: (a) streamwise; and
(b) breadthwise directions, for a �uid with n=1:2 and h0 = 0:1, U =1, V =0. Here �=�=1.

4.3. The �ow �eld and the solid core

So far, the emphasis has been on the in�uence of geometrical and �uid parameters on pres-
sure. This is, of course, understandable since the pressure build-up is of primary interest in
lubrication �ow. Additional insight is gained by examining the �ow �eld and its relation to
the solid core. Figure 15 depicts the velocity pro�les at di�erent locations in the plane of
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symmetry for a �ow with T0 = 0:2, n=1:2, U =1, V =0, h0 = 0:1, �=�=1. Figure 15(a)
con�rms the overall increase in u as the �ow moves towards the minimum-gap region (x=0).
Figure 15(b) gives the distributions of the breadthwise velocity component, v. Compared with
u; v is at least one-order of magnitude smaller. It is, however, not negligible as the breadth-
wise �ow gains strength near the reservoir. The thickness of the plug-�ow zone is a complex
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function of the pressure gradient, the yield stress T0 and the shape parameter �. It can qualita-
tively be inferred from the velocity distributions in Figure 15. The thickness of the plug-�ow
zone is typically illustrated in Figure 16. The expression for hpf is recalled from Equation (12),
which indicates that the plug-�ow thickness is maximum at the location where the pressure
gradient reaches minimum. Figure 16 indicates an enhancement of the solid core near the
minimum gap and the reservoir(s), where the pressure gradient is e�ectively pronounced.

5. CONCLUSIONS

The 3D lubrication �ow for a Herschel–Bulkley (HB) �uid is examined in this study. The
study is conducted for a fully �ooded grease �lm between two rigid ellipsoidal solids under
pure rolling conditions. The numerical solution of the modi�ed Reynolds equation is carried
out using a hybrid spectral=iterative technique. The in�uence of the geometrical and �uid
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parameters on the pressure and velocity distributions is closely examined. The e�ect of ge-
ometry is assessed by varying the ratio of the transverse radius to the rolling radius, �, and
the minimal dimensionless gap of the two ellipsoids, h0. The in�uence of �uid parameters is
assessed by varying the power-law index, n, and the yield stress, T0.
It is found that the pressure distribution exhibits a maximum, similar to Newtonian �uids.

However, the peak pressure increases signi�cantly when increasing either �; n or T0. The peak
pressure location, however, is not signi�cantly a�ected by these three parameters. The minimal
gap, h0, is found to a�ect both the magnitude and the location of the pressure peak. As h0
decreases, the magnitude of the pressure peak increases and the location of the pressure peak
moves downstream. A critical gap (h0 ≈ 0:06) appears to exist, beyond which the pressure
peak and location remain essentially independent of the gap. This critical value depends only
very weakly on geometrical and �uid parameters.
Finally, the major contribution of the study is the treatment of 3D lubrication �ow of grease,

which has not been addressed before. Similar to most lubrication �ow studies, the �ow is
not expected to be su�ciently complex for it not to be intuitively anticipatable. Obviously,
much of the interesting for grease �ow has already been established on the basis of 2D
lubrication �ow. Here the objective is to quantify further the �ow behaviour as it emerges in
real situations.

REFERENCES

1. Hamrock BJ. Fundamentals of Fluid Film Lubrication. McGraw-Hill, Inc.: New York, 1994.
2. Szeri AZ. Fluid Film Lubrication: Theory and Design. Cambridge University Press: Cambridge, 1998.
3. Dowson D, Higginson GR. Elasto-Hydrodynamic Lubrication. Pergamon Press Ltd.: Oxford, 1977.
4. Karbacher R. Betrieb von Waelzlagern bei hohen Drehzahlen mit rotierendem Innen-oder Aussenring. In Einsatz
von Waelzlagern bei extremen Betriebs- und Umgebungsbedingungen, Kleinlein E (ed.), Kontakt und Studium,
Band 574. Expert-Verlag, 1988.

5. Balan C, Franco JM. In�uence of the geometry on the transient and steady �ow of lubricating greases. Tribology
Transactions 2001; 44:53–58.

6. Sasaki T, Mori H, Okino N. Theory of grease lubrication of cylindrical roller bearings. ASLE Transactions
1960; 3:212–219.

7. Wada S, Hayashi H, Haga K, Kawakami Y, Okjims M. Elastohydrodynamic lubrication of a Bingham solid.
Bulletin of the JSME 1977; 20:110–115.

8. Yang Z, Qian X. A solution to the grease lubricated EHD thickness in an elliptical contact. Proceedings of the
International Conference on Tribology, Institution of Mechanical Engineers 1987, Paper No. c347/142.

9. Zhu WS, Neng YT. A theoretical and experimental study of EHL lubricated with grease. Transactions of the
ASME 1988; 110:38–42.

10. Kauzlarich JJ, Greenwood JA. Elastohydrodynamic lubrication with Herschel–Bulkley model greases. ASLE
Transactions 1972; 15:269–277.

11. Jonkisz W, Krzeminski-Freda H. Pressure distribution and shape of an elastohydrodynamic grease �lm. Wear
1979; 55:81–89.

12. Jonkisz W, Krzeminski-Freda H. The properties of elastohydrodynamic grease �lms. Wear 1982; 77:277–285.
13. Yoo J, Kim K. Numerical analysis of grease thermal elastohydrodynamic lubrication problems using the

Herschel–Bulkley model. Tribology International 1997; 30:401–408.
14. Bauer WH. Flow properties of soap concentration and temperature. ASLE Transactions 1960; 3:215–229.
15. Dong D, Qian XL. A theory of elastohydrodynamic grease-lubricated line contact based on a re�ned rheological

model. Tribology International 1988; 21:261–267.
16. Palacios JM, Palacios MP. Theory of grease EHD contacts. Tribology International 1984; 17:167–171.
17. Astrom H, Ostensen JO, Hoglund E. Lubricating grease replenishment in an elastohydrodynamic point contact.

Journal of Tribology 1993; 115:501–506.
18. Poon SY. An experimental study of grease in elastohydrodynamic lubrication. Journal of Lubrication

Technology (ASME) 1972; 94F:27–34.
19. Cheng J. Elastohydrodynamic grease lubrication theory and numerical solution in line contacts. Tribology

Transactions 1994; 37:711–718.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:511–530



530 J. ZHANG, R. E. KHAYAT AND A. P. NORONHA

20. Brewe DE, Hamrock BJ, Taylor CM. E�ect of geometry on hydrodynamic �lm thickness. Journal of Lubrication
Technology 1979; 101:231–239.

21. Kim KH, Sadeghi F. Non-Newtonian elastohydrodynamic lubrication of point contact. Journal of Tribology
1991; 113:703–711.

22. Flynn EA. Grease lubrication using the Herschel–Bulkley model. Master Thesis, Purdue University, 1998.
23. Siddique MR, Khayat RE. In�uence of inertia and topography in thin cavity low. Physics of Fluids 2002;

14:1703–1719.
24. Bird RB, Armstrong RC, Hassager O. Dynamics of Polymeric Liquids. Fluid Mechanics, vol. 1. Wiley: New

York, 1987.
25. Johnson Jr MW, Mangkoesoebroto S. Analysis of lubrication theory for the power law �uid. Journal of

Tribology 1993; 115:71–77.
26. Reichl LE. A Modern Course in Statistical Physics. The University of Texas Press: Austin, 1984.
27. Langlois WE. Slow Viscous Flow. The Macmillan Company, Collier-Macmillan Limited: New York, London,

1964.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:511–530


